If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125^x=1/25^x
We move all terms to the left:
125^x-(1/25^x)=0
Domain of the equation: 25^x)!=0We get rid of parentheses
x!=0/1
x!=0
x∈R
125^x-1/25^x=0
We multiply all the terms by the denominator
125^x*25^x-1=0
Wy multiply elements
3125x^2-1=0
a = 3125; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·3125·(-1)
Δ = 12500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12500}=\sqrt{2500*5}=\sqrt{2500}*\sqrt{5}=50\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{5}}{2*3125}=\frac{0-50\sqrt{5}}{6250} =-\frac{50\sqrt{5}}{6250} =-\frac{\sqrt{5}}{125} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{5}}{2*3125}=\frac{0+50\sqrt{5}}{6250} =\frac{50\sqrt{5}}{6250} =\frac{\sqrt{5}}{125} $
| 4p+17.40=53.50 | | 5(t+5)=45 | | 14x^2+14x+14=0 | | 6(m-12)=18 | | X+(2x-24)=180° | | 21(1.1)=-16(1.1)^2+x(1.1)+6 | | 4x-3=7x-20 | | 1500x=500 | | 2.5(d−8)+5=8 | | 57^3x=1 | | (p−3.88)/2=2.58 | | 2^(x-1)=24 | | 4.07(m+14)=-16.28 | | |7-3k|=|3k+19| | | 3500-13y=4752 | | v/4-1=2.1 | | 6+(p-3)^2=31 | | –6+3m=9+8m | | -3.8=n-12.7-1 | | 3d÷5=75 | | 115-15x=6x+13 | | -53+-13g=-859 | | 4x-5/8=11 | | 3÷x+1+3÷x-1=4 | | X^0.5-2x=-6 | | x’5x+20=2x+29. | | 16x-122=7x+13 | | 59.98+.14x=67.98+.12x | | 4+8r=14+3r | | 3x^2-2x+5=10 | | y=1.5^3 | | -3=-3d+24 |